Slope of line PO is G_{0}

$$
G_{2} \leq G_{0} \leq G_{1} \quad \text { e.g. } G_{1}=0.04, G_{2}=-0.03
$$

Note on the figure: G_{1} is positive, G_{2} is negative
$H_{1}=x_{1} G_{1}-x_{1} G_{0} \Rightarrow x_{1}=\frac{H_{1}}{G_{1}-G_{0}}$
$H_{2}=x_{2} G_{0}-x_{2} G_{2} \quad \Rightarrow \quad x_{2}=\frac{H_{2}}{G_{0}-G_{2}}$
$x_{1}+x_{2}+\frac{L}{2}=S \quad$ See previous proof: $X=\frac{L}{2}$
S concept here is different from a horizontal curve
$\frac{L}{2}=S-\left(\frac{H_{1}}{G_{1}-G_{0}}+\frac{H_{2}}{G_{0}-G_{2}}\right) \quad G_{0} \in\left[G_{2}, G_{1}\right]$
Let: $x=G_{0}$

$$
\begin{align*}
& f(x)=\frac{H_{1}}{G_{1}-x}+\frac{H_{2}}{x-G_{2}} \\
& f(x)=H_{1}\left(G_{1}-x\right)^{-1}+H_{2}\left(x-G_{2}\right)^{-1} \tag{2}\\
& f^{\prime}(x)=H_{1}\left(G_{1}-x\right)^{-2}-H_{2}\left(x-G_{2}\right)^{-2}=0 \\
& \frac{\sqrt{H_{1}}}{G_{1}-x}=\frac{\sqrt{H_{2}}}{x-G_{2}} \quad \text { Note } \frac{\sqrt{H_{1}}}{G_{1}-x} \neq-\frac{\sqrt{H_{2}}}{x-G_{2}}
\end{align*}
$$

)

PVC - Point of Vertical Curve
PVI - Point of Vertical Intersection
PVT - Point of Vertical Tangent

$$
L=2 S-\frac{2\left(\sqrt{H_{1}}+\sqrt{H_{2}}\right)^{2}}{G_{1}-G_{2}}
$$

$$
x \sqrt{H_{1}}-G_{2} \sqrt{H_{1}}=G_{1} \sqrt{H_{2}}-x \sqrt{H_{2}}
$$

7th Edition Green Book, Page 3-166

$$
x=\frac{G_{1} \sqrt{H_{2}}+G_{2} \sqrt{H_{1}}}{\sqrt{H_{1}}+\sqrt{H_{2}}}
$$

Note from (2)

$$
f(x)=\frac{H_{1}\left(\sqrt{H_{1}}+\sqrt{H_{2}}\right)}{G_{1} \sqrt{H_{1}}-G_{2} \sqrt{H_{1}}}+\frac{H_{2}\left(\sqrt{H_{1}}+\sqrt{H_{2}}\right)}{G_{1} \sqrt{H_{2}}-G_{2} \sqrt{H_{2}}}
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)=2 H_{1}\left(G_{1}-x\right)^{-3}+2 H_{2}\left(x-G_{2}\right)^{-3} \\
& x \in\left[G_{2}, G_{1}\right] \Rightarrow f^{\prime \prime}(x)>0
\end{aligned}
$$

$(*)$ is the minimum value.

$$
f(x)=\frac{\sqrt{H_{1}}\left(\sqrt{H_{1}}+\sqrt{H_{2}}\right)}{G_{1}-G_{2}}+\frac{\sqrt{H_{2}}\left(\sqrt{H_{1}}+\sqrt{H_{2}}\right)}{G_{1}-G_{2}}
$$

L value in equation (3) is the maximum required to provide adequate sight distance.

$$
f(x)=\frac{\left(\sqrt{H_{1}}+\sqrt{H_{2}}\right)^{2}}{G_{1}-G_{2}}(*)
$$ When an engineer chooses a value for L, the value in equation (3) is the minimum to pick.

(1) becomes:

$$
L=2 S-\frac{2\left(\sqrt{H_{1}}+\sqrt{H_{2}}\right)^{2}}{G_{1}-G_{2}}(3) \text { Note on Green Book, Grades are percentages. }
$$

