

$$
\begin{align*}
& y=\frac{-G_{1}+G_{2}}{2 L} x^{2}+G_{1} x \tag{1}\\
& y^{\prime}=\frac{-G_{1}+G_{2}}{L} x+G_{1} \tag{2}
\end{align*}
$$

Prove that $a_{1}=a_{2}=\frac{L}{2}$

$$
x=L \quad y=a_{1} G_{1}+a_{2} G_{2}
$$

$a_{1} G_{1}+a_{2} G_{2}=\frac{L}{2}\left(G_{1}+G_{2}\right)$
$a_{1}+a_{2}=L$
$a_{1} G_{1}+\left(L-a_{1}\right) G_{2}=\frac{L}{2}\left(G_{1}+G_{2}\right)$
$a_{1}\left(G_{1}-G_{2}\right)=\frac{L}{2}\left(G_{1}-G_{2}\right)$
$a_{1}=\frac{L}{2}$
So, $a_{1}=a_{2}=\frac{L}{2}$

Vertical curve is a parabola:

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& y^{\prime}=2 a x+b \\
& x=0, y=0 \quad \Rightarrow c=0 \\
& x=0, y^{\prime}=G_{1} \quad \Rightarrow \quad b=G_{1} \\
& y=a x^{2}+G_{1} x \\
& y^{\prime}=2 a x+G_{1} \\
& x=L, y^{\prime}=G_{2}
\end{aligned} \quad \Rightarrow 2 a L+G_{1}=G_{2},
$$

(G1 is positive, G2 is negative,
e.g. $\mathrm{G} 1=0.04, \mathrm{G} 2=-0.03$)

$$
\begin{align*}
x & =L, y=-\frac{L}{2} G_{1}+\frac{L}{2} G_{2}+G_{1} L=\frac{L}{2} G_{1}+\frac{L}{2} G_{2} \quad P V T:\left(L, \frac{L}{2} G_{1}+\frac{L}{2} G_{2}\right) \\
x & =L / 2 \quad \Rightarrow y=\frac{-G_{1}+G_{2}}{2 L} \cdot \frac{L^{2}}{4}+G_{1} \frac{L}{2} \\
e & =\frac{L}{2} G_{1}-\left(\frac{-G_{1}+G_{2}}{2 L} \cdot \frac{L^{2}}{4}+G_{1} \frac{L}{2}\right)=\frac{\left(G_{1}-G_{2}\right) L}{8} \\
A & =G_{1}-G_{2} \tag{3}
\end{align*}
$$

$t(x)=x G_{1}-y(x)=x G_{1}-\left(\frac{-G_{1}+G_{2}}{2 L} x^{2}+x G_{1}\right)=\frac{G_{1}-G_{2}}{2 L} x^{2}$
The highest point on the curve is $\left(x_{0}, y_{0}\right)$

$$
\begin{aligned}
& y^{\prime}=\frac{-G_{1}+G_{2}}{L} x_{0}+G_{1}=0 \Rightarrow x_{0}=\frac{L G_{1}}{G_{1}-G_{2}} \\
& y_{0}=\frac{-G_{1}+G_{2}}{2 L} x_{0}^{2}+G_{1} x_{0}=-\frac{L G_{1}^{2}}{2\left(G_{1}-G_{2}\right)}+\frac{L G_{1}^{2}}{G_{1}-G_{2}}=\frac{L G_{1}^{2}}{2\left(G_{1}-G_{2}\right)}
\end{aligned}
$$

