The equation of a vertical curve is
$y=\frac{-G_{1}+G_{2}}{2 L} x^{2}+G_{1} x$
$y^{\prime}=\frac{-G_{1}+G_{2}}{L} x+G_{1} \Rightarrow x=0, y^{\prime}=G_{1} \quad x=L, y^{\prime}=G_{2}$
The equation of a line is $y=a x+b$
The equation of the line from PVC to PVI is $y=G_{1} x$
The equation of the line from PVI to PVT is $y=G_{2} x+b_{0}$
PVI is $\left(x=\frac{L}{2}, y=G_{1} \frac{L}{2}\right)$
PVI is on the line from PVI to PVT, so

$$
G_{1} \frac{L}{2}=G_{2} \frac{L}{2}+b_{0} \Rightarrow b_{0}=\left(G_{1}-G_{2}\right) \frac{L}{2}
$$

So the line from PVI to PVT becomes $y=G_{2} x+\left(G_{1}-G_{2}\right) \frac{L}{2}$
The equation of a line PO is $y=G_{0} x+b_{1}$ assuming the slope is G_{0} The tangent point is $\left(x_{0}, y_{0}\right)$

$$
\begin{aligned}
& y^{\prime}=G_{0}=\frac{-G 1+G_{2}}{L} \cdot x_{0}+G_{1} \\
& x_{0}=-\frac{\left(G_{0}-G_{1}\right) L}{G_{1}-G_{2}} \quad y_{0}=\frac{-G_{1}+G_{2}}{2 L} x_{0}^{2}+G_{1} x_{0}
\end{aligned}
$$

$$
b_{1}=y_{0}-G_{0} x_{0}=\frac{-G_{1}+G_{2}}{2 L} x_{0}^{2}+\left(G_{1}-G_{0}\right) x_{0}=-\frac{\left(G_{0}-G_{1}\right)^{2} L}{2\left(G_{1}-G_{2}\right)}+\frac{\left(G_{1}-G_{0}\right)^{2} L}{G_{1}-G 2}=\frac{\left(G_{0}-G_{1}\right)^{2} L}{2\left(G_{1}-G_{2}\right)}
$$

Point M $y_{m}=G_{0} x_{m}+b_{1}=G_{1} x_{m}$

$$
x_{m}=\frac{b_{1}}{G_{1}-G_{0}}
$$

Point N $\quad y_{n}=G_{0} x_{n}+b 1=G_{2} x_{n}+\frac{L\left(G_{1}-G_{2}\right)}{2}$

$$
x_{n}=-\frac{b_{1}}{G_{0}-G_{2}}+\frac{L\left(G_{1}-G_{2}\right)}{2\left(G_{0}-G_{2}\right)} \quad X=x_{n}-x_{m}=\frac{L}{2}\left(\frac{G_{1}-G_{2}}{G_{0}-G_{2}}-\frac{\left(G_{0}-G_{1}\right)^{2}}{\left(G_{0}-G_{2}\right)\left(G_{1}-G_{2}\right)}-\frac{\left(G_{0}-G_{1}\right)^{2}}{\left(G_{1}-G_{0}\right)\left(G_{1}-G_{2}\right)}\right)=\frac{L}{2}(*)
$$

The denominator in (${ }^{*}$) is $\left(G_{0}-G_{1}\right)\left(G_{1}-G_{2}\right)\left(G_{0}-G_{2}\right)$
The numerator in (*) is $\quad\left(G_{0}-G_{1}\right)\left(G_{1}-G_{2}\right)^{2}-\left(G_{0}-G_{1}\right)^{2}\left(G_{0}-G_{1}\right)+\left(G_{0}-G_{1}\right)^{2}\left(G_{0}-G_{2}\right)$

$$
\begin{aligned}
& =\left(G_{0}-G_{1}\right)\left(G_{1}^{2}+G_{2}^{2}-2 G_{1} G_{2}-G_{0}^{2}-G_{1}^{2}+2 G_{0} G_{1}+G_{0}^{2}-G_{0} G_{2}-G_{0} G_{1}+G_{1} G_{2}\right) \\
& =\left(G_{0}-G_{1}\right)\left(G_{2}^{2}-G_{1} G_{2}+G_{0} G_{1}-G_{0} G_{2}\right)=\left(G_{0}-G_{1}\right)\left(G_{0}-G_{2}\right)\left(G_{1}-G_{2}\right)
\end{aligned}
$$

So: $X=\frac{L}{2}$

